科研从博士生开始 - 第35章 谁是张硕?赶紧帮忙讲讲!

上一章 目录 下一章
    第35章 谁是张硕?赶紧帮忙讲讲!
    当天晚上,张硕收到了弗雷德里希的回复邮件——
    “张硕先生,你好。
    我是弗雷德里希-约斯特,我审核了你的论文。很抱歉的是,最开始我是带着找问题的心态看的。
    因为我不相信。
    任何一种非线性偏微分方程,都不可能找到通用算法。
    这是我的观点,而你的论文让我改变了看法。
    其中,最精彩的部分在于‘证明渐进解’的逻辑,我还特别问了老朋友马克西姆,把那一部分发给了他。
    你肯定知道他,大名鼎鼎!
    马克西姆告诉我,‘证明渐进解’的部分很完善,能形成完善的逻辑闭环,他评价说那一部分非常有意思,还说想认识你。”
    邮件的前半部分都是说一下无关的事情,唯一确定的是‘证明渐进解’的逻辑没问题。
    后半部分才是主体内容。
    “我对于你的论文很感兴趣,并仔细研究了很久。我发现如果是涉及到非线性问题,你的算法得出的结果范围就会广泛。
    如果涉及到完全非线性的方程,所得出的结果甚至会变得没有意义。
    我的判断,对吗?
    你的算法还可以更进一步,也就是求得更精确的解的范围吗?”
    在邮件的最后,弗雷德里希-约斯特问了两个问题。
    一个是‘涉及到非线性问题,算法得出的结果范围就很广泛’,直白来说,就是结果会变得不精准。
    另一个就是询问算法是否可以再进一步。
    第一个问题非常关键。
    偏微分方程可以分为‘线性’和‘非线性’,而‘非线性’也不一定是‘完全非线性’。
    方程和方程不同,‘非线性’的程度也存在区别。
    线性方程就像是一条笔直的大路,而非线性方程则是公路出现了破损,只要带上了破损,就会被归在‘非线性’范围内。
    显然,公路破损程度存在差异,完全破损,看不出公路的形状,就可以称之为‘完全非线性’。
    张硕的算法问题在于,非线性的程序越高,所计算出的解的范围也就越大。
    比如,线性方程,精确解是100,可以求出99~101的范围。
    某個非线性严重的方程,解的区域是99~101,可能求出的是-10000~10000,只是把解的区域框在了范围内。
    虽然针对完全非线性方程,计算结果大到近乎失去意义,但能针对偏微分方程直接求解,就已经是足以令人惊讶的成果了。
    张硕思考了一下,给弗雷德里希写了回信,“约斯特先生,伱的判断完全正确。
    完全非线性方程的研究包含了诸多的世界难题,为了保证计算结果的准确性,而不是出现错误,只能把结果范围扩大。
    如果想要让算法变得更精准一些,可以对方法论文的第二部分参数评估体系进行修改、完善。
    那一部分是以方程的参数来模拟人脑运算,得出代入数值的结果。
    我的论文中,重要的是模拟人脑运算的方法,而不是更高效的算法。
    至于代入变换法和证明渐进解的部分,我已经想不到方法的再进行细化……”
    张硕后续又解释了一些算法问题,再整体浏览一遍,确定没什么问题后就把邮件发了出去。
    ……
    第二天早上,依旧没有收到回复邮件。
    张硕就和黄凯一起去上课了。
    他很享受和同学一起上课的感觉,好像自己又回到了学生时代。
    当然,也是事实。
    与此同时。
    高等数学研究院二楼办公室,一个留着干练短发的女教师站在门口,轻轻敲了两下门。
    “进!”
    有个胖乎乎的中年人,抬头喊了一声,随后诧异的问道,“童杰,你怎么来了?”
    女教师的名字叫童杰,是数学学院的副教授、硕士生导师,年纪只有三十三岁。
    中年人是苏炳康,数学学院教授,兼任高等数学研究院的在职研究员,也是童杰读博时的导师。
    童杰走进办公室,把手里的草稿本递给苏炳康,“苏老师,看看这个,一个非线性薛定谔方程的求解。”
    苏炳康接过草稿本,带着疑惑认真看了起来。
    草稿本上的解析有五页内容。
    当翻到第二页的时候,他的眉头就已经皱了起来,盯着看了好半天,随后还拿笔进行了验算。
    在验算了几次后,他指着第二页的一个位置,问向童杰,“是不是这里看不懂?”
    “对!”
    童杰说道,“这个转化很奇怪,代入数值验算后,发现有的正确、有的错误,但他最终求出了精确解。”
    “我验算了结果,也没有问题。”
    苏炳康拧着眉头,问道,“这是谁做的求解?”
    童杰道,“我有个学生叫钟怡静。”
    “我问过她了,她是问了一个博士生,那个博士生就是吃午饭的时候看了一下,就快速完成了求解。”
    “博士生?叫什么?”“张硕!”
    “张硕?”苏炳康听的很耳熟,顿时追问道,“是那个拿到高能所项目的博士生?”
    “好像是他,名字一样,但我也不确定。”
    苏炳康点了点头,他站了起来招呼童杰一声,“跟我去一楼。”
    两人一起下了楼。
    一楼有个大办公室,里面有几个人正说着话,也包括高院很有权威的齐志祥。
    苏炳康进去喊了一声,“来看看这个!”
    他把草稿本放在齐志祥的桌上,解释道,“一个非线性薛定谔方程的手动求解,求出一组精确解。”
    “但有一步,我看不懂,帮忙看看!”
    办公室里人顿时来了兴趣。
    苏炳康是高院的正规研究员,数学学院里的博导教授多数都只是在高院挂职,能担任研究员的水平都很高。
    另外,苏炳康主攻偏微分方程方向的研究。
    一个薛定谔方程的求解过程,他都直接说看不懂,就肯定很有意思。
    几个人一起研究了下,很快就找到了关键点,也一起讨论起来,“我验算了,这个转化有问题啊!”
    “有的数值代入正确、有的错误,但关键是,求出的精确解没问题!”
    “错误的转化,怎么能求出精确解?”
    “问题是,怎么转过来的?”
    “看不明白!”
    “这是谁做的求解?而且还求出了精确解,这种方程一般没有精确解吧?”
    他们讨论来讨论去,也没有结果。
    作为专业的数学学者,发现一个领域内的小问题弄不懂,心里就像猫抓一样难受。
    苏炳康说起了是张硕完成的求解。
    齐志祥很干脆的做出决定,“去找他问问!现在就去,这个问题一定要解决,不然睡不着了!”
    “问一个博士生,不太好吧?”有个教授犹豫着。
    “这怕什么?孔子还不耻下问呢,张硕可不是一般的学生,他做的求解,我们问问怎么了?”
    齐志祥不在意的说道。
    几个人就干脆一起去找了张硕,略微打听一下找到了教室门口。
    ……
    张硕正在上课,课程的名字叫做《反问题的数值解法》,讲课的是林智涛教授。
    反问题是一种研究问题,涉及到数学模型,可以用来解决一类问题。
    这些问题本身不可解析。
    反问题的数学解法,基本思路就是先建立一个模型,来描述它可能的行为,然后利用数值技术来解决模型。
    林智涛讲课的风格激情澎湃,他站在台上滔滔不绝,“比如,流体流动面上的气体和液体的动力计算,这种问题是非常非常复杂的。”
    “我们需要做的就是建立模型,把这种问题利用数值方法去代入求解。”
    “这样就能预测流体流动面上(气体和液体)的动力学行为……”
    他正说着的时候,就发现门口站着几个人。
    齐志祥、苏炳康?
    两个高院的研究员过来找他,是要邀请他加入高院?还是说有什么研究上的专业问题?
    前者不可能。
    如果是后者,或许可以加入高院的数学项目?
    怎么也比自己做项目的经费多!
    林智涛顿时无心继续讲课,看了一下时间就干脆停了下来,“今天就到这里了。”
    “下节课,我们会讲数值法解决流体上气体和液体动力学行为的经典例证,大家最好提前预习一下。”
    “下课!”
    林智涛才刚一宣布下课,门口的人就迫不及待的走进来,然后直接把他无视掉,而是朝着学生们问了一声,“谁是张硕?”
    “张硕同学在吗?”
    “哪位是张硕……”
    所有人顿时看向坐在第二排边侧的张硕。
    张硕只感觉莫名其妙,他指着自己疑惑道,“找我?我是张硕……”
    齐志祥快步走过去,把草稿本翻开递过去,问道,“张硕同学,这个步骤的转化方法,能给我们讲讲吗?”
    “为什么这样?做错误的转化,却求出了精确解?”
    张硕接过了草稿本仔细看了一下,下意识问出声,“这不是研二学妹食堂里问的题吗?”
    “对,钟怡静,是我的学生。”
    童杰走到前面,说道,“这个求解过程中,第二页的一个转化,到底是怎么转过去的?”
    张硕又看了一眼草稿本,有点疑惑,不就是非线性薛定谔方程的目标解转化吗?
    这些教授都不懂?
    (本章完)

添加书签

搜索的提交是按输入法界面上的确定/提交/前进键的
上一章 目录 下一章